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New Constrained Reaction Volume (CRV) Facility
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Laser Absorption Yields High Sensitivity

Representative Detection Limits: Polyatomic Molecules
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* Polyatomic molecules @ 1500K: 2-200 ppm



Laser Absorption Yields High Sensitivity

Representative Detection Limits: Diatomic Molecules
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e Diatomic molecules @ 1500K:
- sub-ppm detectivitiy for UV absorbers
- ppm detectivity for IR absorbers
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Advances in Shock Tube
Methodology

1. Improved uniformity with driver inserts

2. Longer test times with tailored gas
mixtures & extended driver

3. Reactive gas modeling:
problem and solutions




Improvement in Reflected Shock Temperature Uniformity
Using Driver Inserts

* Conventional shock tube . T
operation can provide z | =
near-ideal uniform flows .‘% apidt=3tims |
for 1-3 ms S ol
e But, boundary-layers and §
attenuation induce dP/dt initial = 1039 K
and dT/dt at longer times of, 0:8% Propane/ 8% O,/ Ar
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Improvement in Reflected Shock Temperature Uniformity
Using Driver Inserts

* These effects reduce 2o [ Lign
ignition delay times E |1 ot - svme
relative to Constant P case ¢ dT/dt=1.2%/ms
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* Driver inserts modify flow to achieve
uniform T and P at long test times



Improvement in Reflected Shock Temperature Uniformity
Using Driver Inserts

e Result: dP/dt =0 prior to 20 Tign
ignition £
'gl dP/dt = 0%/ms
- Proper 1., for comparison g 1o
with Constant P simulations « T -1039K
: __ll 0.8%1Propanell 8% O,/ Alr
0 5 10 15
Time [ms]

N
Driver Insert
R

Driver Driven <«

VRS

N

10



10
Longer Test Times Achievable with

Tailored Gas Mixtures & Extended Driver Sections

* Conventional shock tube operation: ~ 1-3 ms test time
* No overlap with RCM operation™ 10-150 ms test time
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Longer Test Times Achievable with

Tailored Gas Mixtures & Extended Driver Sections

* Longer driver length and tailored gas mixtures
can provide longer test times (> 40 ms)
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e Shock tubes now can overlap with RCMs




First Use of Long Test-Time Facility:
Low Pressure n-Heptane Ignition in the NTC regime

Test time = 45 ms at 725K

Enables first low-pressure
(~3 atm) n-heptane ignition
data in NTC regime

Clear evidence of 2-stage
ignition: T, =8 ms, 7, =20 ms

Next step: add driver inserts to
remove dP/dt & dT/dt

How do the 3 atm data
compare to high P data?

Relative Pressure
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Low-Pressure, Low-Temperature Studies:
New Results for n-Heptane in the NTC Regime
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 Previous 12-55 atm data
* New 3 atm data
e How do measurements compare with current models?



Low-Pressure, Low-Temperature Studies:
NTC Heptane, Comparison with Model
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LLNL C7 (2000) model performs reasonably well at high P
Further tests needed at low P
Reveals value of long test time experiments
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Reactive Gasdynamics Modeling: A Problem

 Most current reflected shock modeling assumes
Constant-Volume or Constant-Pressure

But:

 Exothermic energy release during oxidation or
endothermic cooling during pyrolysis changes T & P
behind reflected shocks
— not a Constant-V or Constant-P process!

e Example: Heptane Ignition
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Effect of Energy Release on P Profiles:
n-Heptane Oxidation
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e How does this compare with models?
 Not a constant P process!
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Effect of Energy Release on P Profiles:

n-Heptane Oxidation

- 0.4% Heptane/4.4% O,/Ar, ¢=1
1380K, 2.3 atm
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How does this compare with model?
Not a constant P process!
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Not a Constant-V process, even for 0.4% fuel!

So how can entire process be modeled?
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3 Proposed Solutions to Enable Modeling through
Entire Combustion Event

1. Minimize fuel loading to reduce exothermically- or

endothermically-driven T and P changes
- enabled by high-sensitivity laser diagnostics

2. Modified gasdynamics modeling to account for

P and T change during combustion
- work in progress (but computationally intensive: 1-D, 3-D)

3. Use new constrained reaction volume concept to

minimize pressure perturbations
- enables constant P (or specified P) modeling

Examples: 1) Use of dilute reactive mixtures
2) Use of constrained reaction volume
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Example 1: Benefit of Dilute Mixtures
3-Pentanone Oxidation
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* Pressure nearly constant throughout experiment
 Good agreement between Constant H,P model and expt.
 Model successfully includes temperature change
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Example 2: Constrained Reaction Volume Approach
Hydrogen Ignition at 950 K

Conventional Shock Tube Constrained Reaction Volume
Pre-Shock Pre-Shock
Helium _ Helium | Non-Reactive Mix .

Post-Shock Post-Shock

Reflected / \ /

Shock Wave Large Region of Small Region of
Energy Release Energy Release

e Large reaction volume gives large energy release > AP & AT

e CRV gives reduced energy release = near-constant P
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Example 2: Constrained Reaction Volume Approach
Hydrogen Ignition at 950 K

Conventional Shock Tube Constrained Reaction Volume
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e Conventional ST exhibits large pressure change!
 CRV pressure nearly constant throughout experiment!
e Allows kinetics modeling through ignition and combustion!
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Elementary Reaction Rate
Determinations

Goal
Near-direct determination of rate
constants for specific reactions

Examples

OH + ketones:
acetone, 2-butanone, 2- & 3-pentanone

OH + alkanes
OH + butanol isomers
OH + methyl esters




Experimental Strategy

e TBHP used as a prompt OH precursor
e Useful T range (850 to 1350 K)
* Pioneered by Bott and Cohen (1984)
e Also used at Argonne

* Fuel in excess, pseudo-first order experiment

CH

3 fast upon
| MGH shock heating 0O
HyC—C—0 g . ,
C + CH; t OH
CH; HoC” “CHs  °

tert-butylhydroperoxide Acetone
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20

H
ol
T

[
o

ol

7 Representative 3-Pentanone+OH Data:

211 ppm 3-Pentanone / Ar
17 ppm TBHP
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High-quality data allows high-precision comparison with model
Sensitivity analysis confirms pseudo-first order behavior
Near-direct determination of reaction rate constant!
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Results for 3-Pentanone + OH = Products

833K
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 No other high temperature data available

 NUI model (Serinyel et al. ) in excellent agreement
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Summary: OH+Ketones—>Products
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e How do data compare with Structural Activity Relationship (SAR) model?
e Data agree within 25% with SAR-estimated rate constants

e Similar measurements performed with methyl esters .



Summary: OH+Methyl Esters = Products
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e Data agree within 25% with SAR-estimated rate constants
e Current work: OH + aldehydes, alcohols
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Multi-Species Time-Histories

Motivation
Multi-species provide greater constraint
on mechanism refinement/evaluation

Recent Work

Ketones: Acetone, Butanone, 3-Pentanone

Alcohols: 1-, 2-, tert-,& iso-Butanol

Alkanes: n-Hexadecane

Esters: Methyl Formate, MA, MP, MB, EP
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Comparison with Serinyel et al. (2010) Galway NUI
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Two Differences: 1) 3-P decomposition rate; 2) CO/C,H, yields
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Fuel Sensitivity

3-P Data Enables Revision of Decomposition Rate

3-Pentanone Sensitivity Arrhenius Plot: 3-Pent = Products
1429K ' 1250K ' 1111K
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= 3-P data show strong sensitivities = Revised ki, 3.5x Serinyel et al. rate

to k, + k, = CO yields still not correct!
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Mole Fraction [%0]

CO Yield Resolved through Use of O-Atom Balance

3-P and CO data yield total O-atoms

1.0

1% 3-Pentanone / Ar

1248 K, 1.6 atm
0.8+

CcO
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0.6 -
o N .
0.2+ , -
/
0.0 ! I
0 500 1000

1500

O-atom concentration at 1.5 ms

Laser Absorption

3-Pentanone: 23%
CO: 69%
Sum: 92%

Simulation (with new k,+k,)

3-Pentanone: 23%
CO: 43%
CH;CHCO: 27%
Sum: 93%

Model underpredicts CO and overpredicts methyl ketene

Why? Methyl ketene decomposition pathway missing in mechanism

Introduce CH;CHCO - C,H, + CO (assume k the same as ketene decomp.)
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Revised Model Improves 3-P Simulations

Final Modifications to Serinyel et al.
3-Pentanone Mechanism

CO Mole Fraction [ppm]

Revised decomposition rate:
3-pentanone = products

Additional reaction:
methylketene - C,H, + CO
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* Good agreement with 3-P, CH,, CO, and Low-T C,H, time-histories



Ongoing Work

 Diagnostics development & spectroscopy:
— aldehydes (CH,0O, CH;CHO)
— alkyl radicals (C,H;)
— methyl esters (methyl formate)
— Alkenes (C;Hg, C,Hy)

 Continued improvement of shock tube methods:

— constrained reaction volume

 Direct measurement of elementary reactions:
— OH + oxygenates (aldehydes, ethers, alcohols)

— decomposition of oxygenates
— CHj, HO, reactions with HC
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