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Development of complex kinetic 

mechanisms 

In combustion complex chemical mechanisms built by:  

 proposing sets of rules for species interactions: 

 mechanism protocol. 

 developing effective parameterisations for the kinetics 
described within the mechanism. 

• Ability to specify protocols well developed e.g. hydrocarbon 
oxidation.  

• Large comprehensive mechanisms e.g. biodiesel surrogate 
methyl decanoate: 3012 sp., 8820 reacs (Herbinet et al., 2008) 

• Many rate coefficients have to initially be estimated using rules 
related to chemical structure.  

• Does this lead to a robust mechanism? How can the model 
robustness be improved?  

 



Probability distribution  

of predicted Yi 

Improving model robustness 

Joint pdf of 

inputs  

We would like to narrow the output distribution as far 

as possible i.e. to reduce predictive error bars. 



Sensitivity and uncertainty 

analysis 

• Uncertainty analysis (UA) puts 

error bars on predictions.  

• Overlap (or not) with 

experimental values tells us 

whether our model may be 

structurally robust.  
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 Sensitivity analysis (SA) tries to 

determine how much each input 

parameter contributes to the output 

uncertainty (usually variance). 
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Global sensitivity/uncertainty methods 

Global  - attempts to cover whole 

input space using a sampling 

method. 

k1min k1max 

k2max 

k3max 



Why global methods? 

Sampling methods can be computationally costly so why 

bother. 

• To simulate output distributions for available targets. 

• To calculate the contribution of important parameters to 

these distributions however large their uncertainty ranges. 

• To see how each target helps to constrain a parameter 

 Could be important for the use of optimisation approaches where 

parameter isolation helps to narrow constraints. 

• To explore parameter interactions. 



Sampling approaches 

• Need efficient sampling 
approach where the output 
moments converge quickly with 
sample size. 

• Quasi-random approaches 
usually work best.  

• Sample from input 
distributions until predicted 
output mean and variance 
converge.  

• Then need a method to 
investigate input-output 
relationships.  

 



High Dimensional Model 

Representations (HDMR) 

• Input-output relationship is expressed as a finite hierarchical function 

expansion: 

• Model replacement built using quasi random sample and approximation of 

component functions by orthonormal polynomials. 

• Equivalent to ANOVA distribution so each term represents contribution to 

overall output variance. 

• 1st & 2nd order sensitivity indices easily calculated from polynomial 

coefficients. 
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Monte Carlo (MC) simulations 

• Component functions reveal independent mean effect of each 
parameter and highlight any non-linear responses.  

• Local S’i at the nominal value may be quite different from the 
overall effect across the feasible parameter range.  

• Scatter reveals influence of other parameters. 

  

Example from 

flame calculation: 

NOx prediction. 

Highly 

nonlinear 



1st order sensitivities and 

ranking + component functions 

Tells us fraction of output 

variance due to each of 

the inputs. 



2nd order component functions 



Typical practice 

• Constructed mechanism incorporated within model which 

simulates chosen experimental targets: 

 flame speeds, ignition delays, JSR concentration profiles 

• Agreement with targets assessed and sensitivity analysis 

performed.  

Updates made to key 

parameters  e.g. 

through theory or 

direct experiments 

Mechanism optimised 

using available targets 

from indirect 

experiments 



Example 1 

Methanol oxidation 



Comparison of simulated ign. delays (Li et 

al. 2007) with data (Kumar & Sung, 2011) 



Constraints from the 

experiments? 

Impact of modifying rate 

to Tsang value 



Theoretical study of Skodje et 

al. (2010) 

• Mechanism - Li et al. (2007); 18 species, 93 reactions.  

• Target output - ignition delay time (τ) for stoichiometric mixtures of 

methanol and oxygen over a range of temperatures and pressures. 

• Enthalpies of formation and A-factors varied over random sample. 

• Using initial ranges one reaction dominates (up to 90% of total output 

variance) with strong nonlinearities.  

 

 

(T,P,φ)=(1150K,5bar,1) 

Low scatter indicates low 

influence of all other parameters. 



Sensitivity mapping over P/T 

• Can also test how sensitivities change outside of conditions where 

experimental data exists - although uncertainties in activation energies 

were not included in this study. 

• No dramatic changes in this case.  

 

 

 



Model Updates 

• CH3OH+HO2 a key reaction with initial uncertainty (10f) of 5.    

• Transition state theory (TST) and variational TST (VTST) then 

used to re-estimate its rate coefficient (Klippenstein,2011).  

• Lower than value in Li at low T (8 times i.e. larger than 5!) with 

an estimated uncertainty of 2.  

 

• Close agreement 

between new value and 

that of Tsang at low 

temperatures. 

• Closer to Li value at 

high temperatures. 



Results of model updates 

Stage 1 – Li mech 

Stage 2 – CH3OH +HO2 updated TST 

Stage 3 - CH3OH +O2 updated TST 

(T,P,φ)=(1150K,5bar,1) 

10f ~ 2 



Further impacts? 

• Modified rates from both studies are similar at low-

intermediate temperatures - well constrained?  

• Low sensitivity of high T shock tube simulations (Bowman 

1975) and predicted flame speeds. 

• High sensitivity to 

flow reactor data at 

970 K and 2.5 atm.  
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How to combine knowledge? 

• The reaction exhibits sensitivities for several reaction 

systems. 

• Should start to become parameter focussed rather than 

mechanism/target focussed?  

• Possibility to incorporate all sets of data to which a 

parameter is sensitive within a Bayesian framework.  

• Does this get too messy for complex fuels? 

 

 



Possible for H2/O2 

HO2+OH=H2O+O2, Burke et 

al. 2012 

Data from TST, discharge 

flow, shock tubes used. 

H+O2=OH+O, 

Turányi et al. 2012 

Data from ignition 

delays, shock 

tubes 
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Larger fuels? 

• Target predictions for more complex mechanisms are 

unlikely to be driven by only 1 or 2 parameters.  

• What type of approach should be adopted?  

• A hierarchical one where the simpler and better constrained 

systems are tackled first? 

 Turányi’s approach only selects data which is strongly sensitive to 

parameters being constrained i.e. reasonably well isolates 

parameters. 

• The resulting more tightly constrained parameters could 

then be included in studies of more complex fuels – helping 

to isolate the other reactions.  

 



Example 2: Butane oxidation in 

a jet stirred reactor 



Performance of EXGAS 

mech. 

Isothermal jet-stirred 

reactor 

1 atmosphere 

Residence time :  6 s 

Equivalence ratio of  1 

4% butane as inlet 

mole fraction. 

 



Methodology 

• EXGAS mechanism -  1304 uncertain A-factors for forward 

reactions studied. 

• Very large dimensional input parameter space.  

• Screen out unimportant parameters before full global 

analysis. 

• Linear sensitivities at several temperatures used for 

screening.  

• Gives better coverage for remaining parameters allowing 

smaller sample size. 

 



Global Analysis 

• 31 A-factors selected for global runs based on the linear 

screening. 

• Input uncertainty factors assigned from appropriate 

evaluation studies where available -  C0-C2 reactions base 

(Baulch et al. 1994) .  

• For calculated parameters within the primary and 

secondary mechanisms, 10f ~ 3.  

• n-butane + OH 10f ~ 0.3 used based on (Sivaramakrishnan 

et al. 2009). 

 



Global analysis (750 K) 

Exp 

value 

• Wide distribution from zero to 75% n-butane consumption. 

• Experimental value very infrequently predicted. 

• Missing steps or too tight uncertainties used? 



Global sensitivities: no 

dominant reaction 

 

Normalised first-order contributions to 

the overall variance of butane mole 

fraction. 

JSR (Tres 6 s, P 1 atm, stoich, 4% n-butane, 750 K) 



Improving model 

robustness? 

• The ntc region appears to be highly uncertain.  

• Many reactions contribute to uncertainty.  

• Are there missing steps or are assumptions about input 

uncertainties optimistic?  

• Should a hierarchical Bayesian approach be adopted? 

  Start first with H2/O2 chemistry. 

  Then tackle HCHO reactions. 

  Then C2 chemistry. 

  Then try to constrain reactions from C4 scheme. 

• What other experiments could help to constrain these 

important parameters and how do we find out?  



HO2+HO2 (Zhou et al. 2012) 

• TST calculations.  

• Transition state ridge 

upward by 1 kcal/mol to 

better fit experiments of 

Patrick, Lightfoot and 

Kappel. 

 

• Original fmax (Baulch 1994) 

was 0.4. 

 

• Probably could be reduced 

using optimisation 

approaches.  



Aldheydes + HO2 

HO2+CH3CHO=CH3CO+H2O2 

• Baulch (2005) suggests fmax of 0.7. 

• Based on a single set of experimental measurements from 

1976 (Colket et al.). 
 

HO2+HCHO=CHO+H2O2 

• Baulch (2005) suggests fmax of 0.4. 

• Recent TST calcs. from Li et al. 2005 

• Combined analysis?  

What new sets of data could help to  

constrain these parameters better? 



2nd oxygen addition reactions to form 

O2QOOH 

A-factor for reaction 

R33C4H9O2P+O2=R41C4H9O4UP 

• Very scattered response 

but data hints that rate is 

might be lower than the 

nominal value used which 

was based on analogy to 

rate coefficients for propyl 

+ O2 from De Sain et al. 

(2003) 

• Clearly a key reaction 

class driving fuel reactivity. 

• QOOH+O2 studied for 

propane and pentane 

theoretically by Bozzelli 

and Coworkers but not for 

butane. 

 

exp 



2nd oxygen addition reactions 

to form O2QOOH 

• Rate used was estimated on the basis of analogy to rate 

coefficients for propyl + O2 from De Sain et al. (2003) 

• Recent theoretical calculations exist from Goldsmith et al. 

(2012) for the propyl + O2 system suggest that for the main 

channel the reaction forming O2QOOH is slower than the 

equivalent rate for propyl + O2 at 750 K. 

• An equivalent temperature dependant study for butyl would 

be very useful.  

• Still large uncertainties for these types of reactions. 

• If basic C1/H scheme was better constrained then then 

indirect experiments might help to constrain rates for 

reactions which are difficult to study experimentally.    

 



Forward steps 

• Could be useful to collate information about conditions over 

which certain reactions have high sensitivity coefficients.  

 i.e. parameter focus rather than experimental. 

• Would involve simulating a lot of data sets over different 

temperatures and pressures for a lot of different fuels in a 

consistent way.  

• Optimisation approaches which combine data sets are 

clearly a way forward in terms of reducing input uncertainty 

distributions.  

• Possible for H2/O2 chemistry ( last talk). 

• How to do it for complex fuels raises all sorts of questions.  

 


