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I-Motivation 
 
•  Fossil fuels depletion and EPA regulations drive the need for:  
 Alternative synthetic fuels 
 Efficient engines with high pressure compression ratios 
 Burning in the lean premixed mode to reduce emissions 

•  Homogenous Compression Charge Ignition (HCCI) Engines  
   auto-ignite a homogenous lean premixed charge at high pressure          
compression ratios 

II-HCCI Operation and Challenges 
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HCCI 

Injection Premixed  
homogenous  
charge 

High in-cylinder 
compression ratio Premixed  ultra lean (φ< 

0.45) homogeneous charge 

Ignition at low T < 1000 K 

Severe pressure 
rise and heat 
release 

High efficiency (diesel engines) 

Detailed low temperature  
chemistry (LTC) models 

Severe heat release 
Low PM - Low NOx 

Not well understood (Objectives): 
•  Autoignition at low temperature with thermal/mixture stratification 
•  Effect of exhaust gas recirculation (EGR) on autoignition 
•  The coupling effect of transport/chemistry on LTC ignition 

Low load :Low 
efficiency (HC-CO) 
High load: limited by 
Heat release rate 

III-Numerical Setup : HCCI  
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Stratification in T and φ using Passot-Pouquet 
spectrum 
Uncorrelated   T and φ spectrum  
Reλ=20 
η= 5.3µm 

Volumetric heating 
compression at the 
TDC- P=30 atm 
T=834.5K (NTC) 
DME/Air mixture 
55 species (Curran et al. 
CNF 1998) 

Domain: 1.5x1.5 mm domain 
362x362 grid points  (4 µm mesh)  
Fully compressible formulation 
Periodic in all directions Initial spectrum conditions 

Mean rms Integral length Scale 
U 0 0.5 1.24 mm 
T 834.5 K 15K 1 mm 
φ	

 0.3 0.1 1 mm 

Initial H2O2 from EGR 

Case-I Case-II 

YH2O2=0 YH2O2=400ppm 

IV-NTC Autoignition (OD/DNS) 
•  CONCLUSIONS-I 

•  DME/Air has three NTC ignition stages 

 Low TC, Intermediate TC, High TC 

•  H2O2 from EGR enhances autoignition 
by increasing the OH radical pool 

•  46% reduction in LTC ignition 

•  34% reduction in HTC and ITC ignitions  
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HTC V-LTC chemistry and H2O2 Effect  
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Case-I VI-Flame propgation Modes at LTC 
Ignition Kernel viewed by Heat release rate Q  
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VII-Conclusion 
 DNSs are conducted for a stratified HCCI engine with EGR 
 DME/air has three ignition stages in the NTC region initial conditions 
 H2O2 addition from EGR accelerates ignition by the OH radical pool 
 Thermal and mixture stratification introduce mixing time scales that 

interact strongly with chemistry after the LTC ignition stage 
 Two different reaction front ignition modes are found : a 

homogeneous ignition and deflagration modes 
 A criteria to distinguish between the different modes  are developed 

based on the local time scales and radical pool 
Deflagration wave at flame front A, D,E,F,G, and H 
Homogeneous spontaneous ignition at point C 


